Skip to content

Posts from the ‘HCI’ Category

How to rebuild a VCF/vSAN cluster with multiple corrupt boot devices

Note: this is the first part of a series.

In my lab, I recently had an issue where a large number of hosts needed to be rebuilt. Why did they need to be rebuilt? If you’ve followed this blog for a while, you’ve seen the issues I’ve run into with SD cards being less than reliable boot devices.

Why didn’t I move to M.2 based boot devices? Unfortunately, these are rather old hosts and unlike modern hosts, there is not an option for something nice like a BOSS device. This is also an internal lab cluster used by the technical marketing group, so while important, it isn’t necessary “mission critical” by any means.

As a result of this, and a power hiccup I ended up with 3 hosts offline that could not restart. Given that many of my VM’s were set to only FTT=1 this means complete and total data loss right?

Wrong!

First off, the data was still safe on the disk groups of the 3 offline hosts. Once I can get the hosts back online the missing components will be detected and the objects will become healthy again (yah, data loss!). vSAN does not keep the metadata or data structures for the internal files systems and object layout on the boot devices. We do not use the boot device as a “Vault” (if your familiar with the old storage array term). If needed all of the drives in a dead host can be moved to a physically new host and recovery would be similar to the method I used of reinstalling the Hypervisor on each host.

What’s the damage look like?

Hopping into my out of band management (My datacenter is thousands of miles away) I discovered that 2 of the hosts could not detect their boot devices, and the 3rd failed to fully reboot after multiple attempts. I initially tried reinstalling ESXi on the existing devices to lifeboat them but this failed. As I noted in a previous blog, SD cards don’t always fully fail.

Live view of the SD cards that will soon be thrown into a Volcano

If vSAN was only configured to tolerate a single failure, wouldn’t all of the data at least be inaccessible with 3 hosts offline? It turns out this isn’t the case for a few reasons.

  1. vSAN does not by default stripe data wide to every single capacity device in the cluster. Instead, it chunks data out into fresh components every 255GB (Note you are welcome to set strip width higher and force more sub-components being split out of objects if you need to).
  2. Our cluster was large. 16 hosts and 104 physical Disks (8 disks in 2 disk groups per host).
  3. Most VM’s are relatively small, so out of the 104 physical disks in the cluster, having 24 of them offline (8 per host in my case). still means that the odds of those 24 drives hosting 2 of the 3 components needed for a quorum is actually quite low.
  4. A few of the more critical VM’s were moved to FTT=2 (vCenter, DNS/NTP servers) making their odds even better.

Even in the case of a few VM’s that were impacted (A domain Controller, some front end web servers), we were further lucky by the fact that these were redundant virtual machines already. Given both of the VMs providing these services didn’t fail, it became clear with the compounding ods in our favor that for a service to go offline was more in the odds of rolling boxcars twice, than a 100% guarantee.

This is actually something I blogged about quite a while ago. It’s worth noting that this was just an availability issue. In most cases of actual true device failure for a drive, there would normally be enough time between loss to allow for repair (and not 3 hosts at once) making my lab example quite extreme.

Lessons Learned and other takeaways:

  1. Raise a few Small but important VM’s to a higher FTT level if you have enough hosts. Especially core management VMs.
  2. vSAN clusters can become MORE resilient to loss of availability the larger they are, even keeping the same FTT level.
  3. Use higher quality boot devices. M.2 32GB and above with “real endurance” are vastly superior to smaller SD cards and USB based boot devices.
  4. Consider splitting HA service VM’s across clusters (IE 1 Domain Controller in one of our smaller secondary clusters).
  5. For Mission-Critical deployments use of a management workload domain when using VMware Cloud Foundation, can help ensure the management is fully isolated from production workloads. Look at stretched clustering, and fault domains to take availability up to 11.
  6. Patch and reboot your hosts often. Silently corrupt embedded boot devices may be lurking in your USB/SD powered hosts. You might not know it until someone trips a breaker and suddenly you need to power back on 10 hosts with dead SD devices. Regular patching will catch this one host at a time.
  7. While vSAN is incredibly resilient always have BC/DR plans. Admins make mistakes and delete the wrong VMs. Datacenters are taken down by “Fire/Flood/Blood” all the time.

I’d like to thank Myles Grey and Teodora Todorova Hristov for helping me make sense of what happened and getting the action plan to put this back together and grinding through it.

Understanding File System Architectures.

File System Taxonomy

I’ve noticed that Clustered File Systems, Global file systems, parallel file systems and distributed file systems are commonly confused and conflated. To explain VMware vSAN™ Virtual Distributed File System™ (VDFS) I wanted to highlight some things that it is not. I’ll be largely pulling my definitions from Wikipedia but I look forward to hearing your disagreements on twitter. It is work noting some file systems can have elements that cross the taxonomy of file system layers for various reasons. In some cases, some of these definitions are subcategories of others. In other cases, some file systems (GPFS as an example) can operate in different modes (providing RAID and data protection, or simply inherent it from a backing disk array).

Clustered File System

A clustered file system is a file system that is shared by being simultaneously mounted on multiple servers. Note, there are other methods of clustering applications and data that do not involve using a clustered file system.

Parallel file systems

Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance. While the vSAN layer mirrors some characteristics (Distributed RAID and striping) it does not 100% match with being a parallel file system.

Examples would include OneFS and GlusterFS.

shared-disk file system

shared disk file systems are a clustered file system but are not a parallel file system. VMFS is a shared disk file system. The most common form of a clustered file system that leverages a storage area network (SAN) for shared access of the underlying LBAs. Clients are forced to handle the translation of file calls, and access control as the underlying shared disk array has no awareness of the actual file system itself. Concurrency control prevents corruption. Ever mounted NTFS to 2 different windows boxes and wondered why it corrupted the file system? NTFS is not a shared disk file system and the different operating systems instances do not independently by default know how to cleanly share the partition when they both try to mount it. In the case of VMFS, each host can mount a given volume as read and write, while cleanly making sure that access to specific subgroups of LBA’s used for different VMDKs (or even shared VMDKs) is properly handled with no data corruption. This is commonly done over a storage area network (SAN) presenting LUNs (SCSI) or namespaces (NVMe over fabrics). protocol to share this is block-based and can range from Fibre Channel, iSCSI, FCoE, FCoTR, SAS, Infiniband etc.

Example of 2 hosts mounting a group of LUNs and using VMFS to host VMs

Examples would include: GFS2, VMFS, Apple xSAN (storenext).

Distributed file systems

Distributed file systems do not share block-level access to the same storage but use a network protocol to redirect access to the backing file server exposing the share within the namespace used. In this way, the client does not need to know the specific IP address of the backing file server, as it will request it when it makes the initial request and within the protocol (NFSv4 or SMB) be redirected. This is not exactly a new thing (DFS in Windows is a common example, but similar systems were layered on top of Novell based filers, proprietary filers etc). These redirects are important as they prevent the need to proxy IO from a single namespace server and allow the data path to flow directly from the client to the protocol endpoint that has active access to the file share. This is a bit “same same but different” to how iSCSI redirects allow connection to a target that was not specified in the client pathing, or ALUA pathing handles non-optimized paths in the block storage world. For how vSAN exposes this externally using NFS, Check out this blog, or take a look at this video:

The benefits of a distributed file system?

  1. Access Transparency. This allows back end physical data migrations/rebuilds to happen without the client needing to be aware and re-pointing at the new physical location. clients are unaware that files are distributed and can access them in the same way as local files are accessed.
  2. Transparent Scalability. Previously you would be limited to the networking throughput and resources of a single physical file server or host that hosted a file server virtual machine. With a distributed file system each new share can be distributed out onto a different physical server and cleanly allow you to scale throughput for front end access. In the case of VDFS, this scaling is done with containers that the shares are distributed across.
  3. Capacity and IO path efficiency – Layering a scale-out storage system on top of an existing scale-out storage system can create unwanted copies of data. VDFS uses vSAN SPBM policies on each share and integrates with vSAN to have it handle the data placement and resiliency. In addition layering, a scale-out parallel file system on top of a scale-out storage system leads to unnecessary network hops for the IO path.
  4. Concurrency transparency: all clients have the same view of the state of the file system. This means that if one process is modifying a file, any other processes on the same system or remote systems that are accessing the files will see the modifications in a coherent manner. This is distinctly different from how some global file systems operate.

It is worth noting that VDFS is a distributed file system that exists below the protocol supporting containers. A VDFS volume is mounted and presented to the container host using a secure direct hypervisor interface that bypasses TCP/IP and the vSCSI/VMDK IO paths you would traditionally use to mount a file system to virtual machine or container. I will explore more in the future. For now, Duncan Explains it a bit on this blog.

Examples include: VDFS, Mirosoft DFS, BlueArc Global Namespace

Global File System

Global File Systems are a form of a distributed file system where a distributed namespace provides transparent access to different systems that are potentially highly distributed (IE in completely different parts of the world). This is often accomplished using a blend of caching and the use of weak affinity. There are trade-offs in this approach as if the application layer is not understood by the client accessing the data you have to deal with manually resolving conflicting save attempts of the same file, or forcing one site to be “authoritative” slowing down non-primary site access. While various products in this space have existed they tend to be an intermediate step for an application-aware distributed collaboration platform (or centralizing data access using something like VDI). While async replication can be a part of a global file system, file replication systems like DFS-R would not technically qualify. Solutions like Dropbox/OneDrive have reduced the demand for this kind of solution.

Examples include: Hitachi HDI

Where do various VMware storage technologies fall within this?

VMFS – a Clustered file system, that specifically falls within the shared-disk file system. While powerful and one of the most deployed file systems in the enterprise datacenter, it was designed for use with larger files that are (With some exceptions) only accessed by a single host at a time. While support for higher numbers of files and smaller files has improved significantly over the years, general-purpose file shares are currently not a core design requirement for it.

vVols – Not a clustered file system. An abstraction layer for SAN volumes, or NFS shares. For block volumes (SAN) it leverages SUB-LUN units and directly mounts them to the hosts that need them.

VMFS-L – A non-clustered variant Used in vSAN prior to the 6.0 release. Also used for the ESXi installed volume. File system format is optimized for DAS. Optimization include aggressive caching with for the DAS use case, a stripped lockdown lock manager, and faster formats. You commonly see this used on boot devices today.

VDFS – vSAN Virtual Distributed File System. A Distributed file system that sits inside the hypervisor directly onto of vSAN objects providing the block back end. As a result, it can easily consume SPBM policies on a per-share basis. For anyone paying attention to the back end, you will notice that objects are automatically added and concatenated onto volumes when the maximum object size is reached (256GB). components behind these objects can be striped, or as a result of various reasons be automatically spanned and created across the cluster. It is currently exposed through protocol containers that export NFSv3 or NFSv4.1 as a part of vSAN file services. While VDFS does offer a namespace for NFSv4.1 one connections and handles redirection of share access, it does not currently globally redirect between disparate clusters, so it would not be considered a global file system.

Peanut Butter is Not Supported with vSphere/Storage Networking/vSAN/VCF

 From time to time I get oddball questions where someone asks about how to do something that is not supported or a bad idea. I’ll often fire back a simple “No” and then we get into a discussion about why VMware does not have a KB for this specific corner case or situation. There are a host of reasons why this may or may not be documented but here is my monthly list of “No/That is a bad idea (TM)!”.

How do I use VMware Cloud Foundation (VCF) with a VSA/Virtual Machine that can not be vMotion’d to another host?

This one has come up quite a lot recently with some partners, and storage vendors who use VSA’s (A virtual machine that locally consumes storage to replicate it) incorrectly claiming this is supported. The issue is that SDDC Manager automates upgrade and patch management. In order to patch a host, all running virtual machines must be removed. This process is triggered when a host is placed into maintenance mode and DRS carefully vMotions VMs off of the host. If there is a virtual machine on the host that can not be powered off or moved, this will cause lifecycle to fail.

What about if I use the VSA’s external lifecycle management to patch ESXi?

The issue comes in, running multiple host patching systems is a “very bad idea” (TM). You’ll have issues with SDDC Manager not understanding the state of the hosts, but also coordination of non-ESXi elements (NSX perhaps using a VIB) would also be problematic. The only exception to using SDDC manager with external lifecycle tooling tools are select vendor LCM solutions that done customization and interop (Examples include VxRAIL Manager, the Redfish to HPE Synergy integration, and packaged VCF appliance solutions like UCP-RS and VxRACK SDDC). Note these solutions all use vSAN and avoid the VSA problem and have done the engineering work to make things play nice.

JAM also not supported!

Should I use a Nexus 2000K (or other low performing network switch) with vSAN?

While vSAN does not currently have a switch HCL (Watch this space!) I have written some guidance specifically about FEXs on this personal blog. The reality is there are politics to getting a KB written saying “not to use something”, and it would require cooperation from the switch vendors. If anyone at Cisco wants to work with me on a joint KB saying “don’t use a FEX for vSAN/HCI in 2019” please reach out to me! Before anyone accuses me of not liking Cisco, I’ll say I’m a big fan of the C36180YC-R (ultra deep buffers RAWR!), and have seen some amazing performance out of this switch recently when paired with Intel Optane.

Beyond the FEX, I’ve written some neutral switch guidance on buffers on our official blog. I do plan to merge this into the vSAN Networking Guide this quarter. 

I’d like to use RSPAN against the vDS and mirror all vSAN traffic, I’d like to run all vSAN traffic through a ASA Firewall or Palo Alto or IDS, Cisco ISR, I’d like to route vSAN traffic through a F5 or similar requests…

There’s a trend of security people wanting to inspect “all the things!”.  There are a lot of misconceptions about vSAN routing or flowing or going places.

Good Ideas! – There is some false assumptions you can’t do the following. While they may add complexity or not be supported on VCF or VxRAIL in certain configurations, they certainly are just fine with vSAN from a feasibility standpoint.

  1. Routing storage traffic is just fine. Modern enterprise switches can route OSPF/Static routes etc at wire-speed just fine all in the ASIC offloads. vSAN is supported over layer 3 (may need to configure static routes!) and this is a “Good idea” on stretched clusters so spanning tree issues don’t crash both datacenters!
  2. vSAN over VxLAN/VTEP in hardware is supported.
  3. VSAN over VLAN backed port groups on NSX-T is supported.

Bad Ideas!

Frank Escaros-Buechsel with VMware support once told someone “While we do not document that as not supported, it’s a bit like putting peanut butter in a server. Some things we assume are such bad idea’s no one would try them, and there is only so much time to document all bad ideas.

  1. Trying to mirror high throughput flows of storage or vMotion from a VDS is likely to cause performance problems. While I”m not sure of a specific support statement, i’m going to kindly ask you not to do this. If you want to know how much traffic is flowing and where, consider turning on SFLOW/JFLOW/NetFlow on the physical switches and monitoring from that point. vRNI can help quite a bit here!
  2. Sending iSCSI/NFS/FCoE/vSAN storage traffic to an IDS/Firewall/Load balancer. These devices do not know how to inspect this traffic (trust me, they are not designed to look at SCSI or NVMe packets!) so you’ll get zero security value out of this process. If you are looking for virus binaries, your better off using NSX guest introspection and regular antivirus software. Because of the volume, you will hit the wire-speed limits of these devices. Outside of path latency, you will quickly introduce drops and re-transmits and murder storage traffic performance. Outside of some old Niche inline FC encryption blades (that I think Netapp used to make), inline storage security devices are a bad idea. While there are some carrier-grade routers that can push 40+ Gbps of encryption (MLXe’s I vaguely remember did this) the costs are going to be enormous, and you’ll likely be better off just encrypting at the vSCSI layer using the VM Encryption VAIO filter. You’ll get better security that IPSEC/MACSEC without massive costs.

Did I get something wrong?

Is there an Exception?

Feel free to reach out and lets talk about why your environment is a snowflake from these general rules of things “not to do!”

When is the right time to transition to vSAN?

 

When is the right time to swap to vSAN?

Some people say: When you refresh storage!

Others say it’s: When you refresh Servers!

They are both right. It’s not an “or” both are great times to look at it. Let us dig deeper….

Amazing ROI on switching to HCI can come from a full floor sweep that is tied to refreshing with faster servers, and newer loss cost to acquire and maintain storage. There are even awsome options for people who want another level of wrapped support and deployment (VxRAIL, HCP-UC).

But what about for cases where an existing server or storage investment makes a wholesale replacement seem out of reach?  What about the guy who just bought storage or servers yesterday and learned about vSAN (or new features that they needed like Encryption or local protection today?

Lets split these situations up and discuss how to handle them.

What happens when my existing storage investment is largely meeting my needs? What should I do with the server refresh?

Nothing prevents you from buying ReadyNodes without drives and adding them later as needed without disruption. Remember ESXi includes the vSAN software so there will be nothing to “install” other than drives in the hosts. HBA’s  are the most common missing feature from a new server and a proper high queue depth vSAN certified HBA is relatively cheap (~$300). That’s a solid investment. Not having to take a server offline later to raise the hood and install something is instant ROI on those components. Remember with Dell/Lenovo/SuperMicro/Fujitsu vSAN Config assist will handle deploying the right driver/firmware for you at the push of a button.

Some other housecleaning items to do when your deploying new hosts (on the newest vSphere!) to get you vSAN ready down the road.

  1. See if the storage is vVols compatible. If it is, start deploying it. SPBM is best way to manage storage going forward, and vSAN and vVols both share this management plane. As you move forward into vSAN, having vRA, vCloud Director, OpenStack and other tools that leverage SPBM configured to use it will allow you to leverage your existing storage investment more efficiently. It’s also a great way to familiarize yourself with vSAN management. Being able to expose storage choice into vRA to end users is powerful. Remember, VAIO and VM Encrypt also use SPBM. so it’s time to start migrating your storage workflows over to it!
  2. Double check your upcoming support renewals to make sure that you don’t have a spike creeping up on you. Having a cluster of vSAN deployed and testedand with hosts ready to expand rapidly puts you in a better position to avoid getting cornered into one more year of expensive renewals. Also watch out for other cost creep. Magic stretched cluster virtualization devices or licensing, FCoE gear, fabric switches, structured cabling for Fibre Channel expansion, and special monitoring tools for fabrics all have hidden capex and support costs. [LOL]
  3. Look at expansion costs on that storage array. Arrays will often be discounted deeply on the initial purchase but expansion can sometimes be 2-3x what the initial purchase cost was! Introducing vSAN for expansion guarantee’s  lower cost per GB as you expand (vSAN doesn’t tax drives or RAM like other solutions).
  4. Double check those promised 50x dedupe ratios and insanely low latency figures! Often data efficiency claims are made and include  Snapshots, Thin Provisioning, linked clones and other basic features.   Also, check to see that you’re getting the performance you need.

What happens when my servers were just refreshed, but I need to replace storage?

If your servers are relatively new (Xeon v3/v4/Intel Scalable/AMD EPYC) then there is a good chance that adding the needed pieces to turn them into ReadyNodes is not far off. Check out the ready node bill of materials to see if your existing platform will work. See what it needs and reach out to your server vendor for the needed HBA (and possibly NIC) upgrades to get them ready for vSAN. Your vSAN SE’s and account teams can help!