Skip to content

Posts from the ‘VSAN’ Category

How to make a vSAN storage only node? (and not buy a mainframe!)

I get asked on occasion, “can I buy a vSAN storage only node?” It’s generally followed by a conversation how they were told that storage only nodes are the only way to “control costs in an HCI future”. Generally they were told this by someone who doesn’t support external storage, doesn’t support easy expansion of existing hosts with more drives, and has management tools that are hostile to external storage and in some cases not support entire protocols.

It puzzled me at first as it’s been a long time since someone has tried to spin only being able to buy expansion storage from a single vendor in large chunks as a good thing. You would think it’s 1976 and we are taking about storage for mainframes.

 

 

By default vSAN allows you to use all hosts in a cluster for both storage and compute and encourages you to scale both out as you grow.

First off, this is something that can be avoided with a few quick tricks.

  1. If you are concerned about growing storage asymmetrically, I encourage you to design some empty drive bays in your hosts so that you can add additional disk groups in place (It’s not uncommon to see customers double their storage by just purchasing drives and not having to pay more for VMware licensing!). I see customers put 80TB in a host, and with all flash RAID 5 and Dedupe and Compression you can get a LOT of data in a host! I’ve seen a customer buy a R730XD and only use 8 drive bays to start and triple their storage capacity in place by simply buying some (Cheaper, as it was a year later) drives!
  2. If this is request is because of HIGHLY asymmetric growth of cold data (I have 50 TB of data for hot VM’s, and 600TB per host worth of cold data growth) I’d encourage you to use vSAN for the hot data and look at vVols for the cold data. VMware is the only HCI platform that gives you a seamless management framework (SPBM) for managing both HCI storage, as well as external storage. vSAN is great for 80% of total use cases (and more than often enough for 100% of many customers) but for corner cases we have a great way to use both. I’ve personally run a host with vSAN, iSCSI, FC and NFS and it works and is supported just fine. Having vVols to ease the management overhead of those other profiles can make things a lot better! If your growing bulk cold data with NL-SAS drives at large scale like this JBOD’s on a modular array are going to be the low cost option.

Now back to the question at hand. What about if the above approaches don’t work. I just need a little more storage, (maybe another host or 3’s worth) and my storage IO profile is growing with my data so it’s not a hot/cold problem and I’d rather keep it all on vSAN. Also you might have a concern about licensing as you have workloads that if they use a CPU for compute will need to license the host (Oracle, Windows etc).  In this case you have two options for a vSAN storage only node.

First lets define what a storage only node is.

  1. A storage only node is a node that does not provide compute to the cluster. It can not run virtual machines without configuration changes. 
  2. A storage only node while not providing compute adds storage performance and capacity to the cluster.

The first thing is to determine what licensing you are using.

If you are using vSphere Enterprise Plus here is how to make a storage node

Lets assume we are using all flash and purchase a 2RU host with 24 drive bays of 2.5” drives and fill it full of storage (~80TB of SSD can be put into a host today, but as bigger drives are certified in the future this could easily be a lot more!). Now to keep licensing costs down we are going to get a single socket CPU, and get fewer cores (but keep the clock speed high). This should help control power consumption.

you can leverage DRS “Anti-affinity” rules to keep virtual machines from running on a host. Make sure to use the “MUST” rules, and define that virtual machines will never run on a host.

Deploy LogInsight. It can track vMotions and power on events and give you a log that shows that a host was never used for licensing/auditing purposes.

At this point we just need a single CPU license for vSphere, and a single vSAN socket license and we are ready to roll. If down the road we decide we want to allow other workloads (maybe something that is not licensed per socket) we can simply tune our DRS rules and allow that host to be used for those virtual machines (maybe carve out a management DRS pool and put vROPS, LI, and the vCSA on those storage hosts?).

Next up, if you are using a licensing tier that does NOT have access to DRS you can still make a storage only node.  

Again, we buy our 2RU server with a single CPU and a token amount of ram to keep licensing costs down and stuff it full of 3.84TB drives!

Now since we don’t have DRS we are going to have to find other ways to prevent a VM from being powered onto a host, or vMotioned to a host.

Don’t extend the Virtual Machine port groups to that host!

Deploy a separate vDS for the storage hosts, and do not setup virutal machine port groups. A virtual machine will not power up on a host that it can not find it’s port group on.

What if I’m worried someone might create a port group?

Just take away their permissions to create them, or change them on Virutal Machines!

In this case your looking at a single socket of vSphere and a single socket of vSAN. Looking at the existing price for drives, in this case the “Premium” for software for this storage only node would be less than 10% of the costs of the drives. As someone who used to sell storage arrays I’d put the licensing costs as comparable to what I’d pay for an empty JBOD shelf. There’s a slight premium here for the server, but as your adding additional controller capacity, for workloads that are growing IO with capacity this isn’t really a bad thing as the alternative was overbuying controller capacity up front to handle this expansion.

The other thing to note, is that your investment in vSAN and vSphere licensing is a perpetual one. In 3 years when 16TB drives are low costs nothing stops you from upgrading some disk groups and using your existing licensing. In this way your perpetual license for vSAN is getting cheaper every year.

If you want to control storage and licensing costs, VMware gives you a lot of great options. You can expand vSAN in place, you can add storage only nodes for a low cost for perpetual licenses, and you can serve wildly diverse storage needs with VVOls hand the half a dozen protocols we support. Buying into a platform that can only be expanded by a single vendor runs counter to the promise of a software defined datacenter. This leads us back to the dark ages of mainframes.

Using SD cards for embedded ESXi and vSAN?

*Update to include corruption detection script, and better KB on endurance and size requirements for  boot devices also updated it for vSphere 7 guidance*

I get a lot of questions about embedded installations of VMware vSAN.

Cormac has written some great advice on this already.

This KB explains how to increase the crash dump partition size for customers with over 512GB of RAM.

vSAN trace file placement is discussed by Cormac here.

Given that vSAN does not support running VMFS on the same RAID controller used for pass thru this often causes customers to look at embedded ESXi installs. Today a lot of deployments are done using embedded SD cards because they support a basic RAID 1 mirror system.

The issue

While not a vSAN issue directly this issue can impact vSAN customers. We have identified this issue on non-vsan hosts.

GSS has seen challenges with lower quality SD cards exhibiting significantly higher failure rates as bad batches in the supply chain have caused cascading failures in clusters. VMware has researched the issue and found that a amplification of reads is making the substandard parts fail quicker. Note the devices will not outright fail, but can be detected by running a hash of the first 20MB repeatedly and getting different results. This issue is commonly discovered on a reboot. As a result of this in 6.0U3 we have a method of redirecting the VMTools to a RAMDisk as this was found to be the largest source of reads to the embedded install. The process for setting this as follows.

Prevention

Log into each host using an SSH connection and set the ToolsRamdisk option to “1”:

1. esxcli system settings advanced set -o /UserVars/ToolsRamdisk -i 1
2. Reboot the ESXi host
3. Repeat for remaining hosts in the cluster.

Thanks to GSS/Engineering for hunting this issue down and getting this work around out. More information can be found on the KB here. As a proactive measure I would recommend all embedded SD card and USB device deployments use this flag, as well as any environment that seeks faster VMTools performance.

Detection

Knowing is half the battle!

This host will likely not survive a reboot!

What if you do not know if you are impacted by this issue?  William Lam has written this great script that will check the MD5 hash of the first 20MB in 3 passes, to detect if you are impacted by this issue. (Thanks to Dan Barr for testing).

Going forward I expect to see more deployments with High endurance SATADOM devices, as well as in future server designs embedded M.2 slots for boot devices becoming more common and SD cards retired as the default option. While these devices may lack redundancy I would expect a higher MTBF for one of these than a pair of low quality/cost SD cards. The lack of end to end nexus checking on embedded devices vs a full drive also contribute to this. Host profiles and configuration backups can mitigate a lot of the challenges of rebuilding one in the event of a failure.

Mitigation

Check out this KB for how to Backup your ESXi configuration (somewhere other than the local device).

Evacuate the host swap in the new device with a fresh install and restore the configuration.

Looking for a new Boot Device?

Although a 1GB USB or SD device suffices for a minimal installation, you should use a 4GB or larger device. The extra space will be used for an expanded coredump partition on the USB/SD device. Use a high quality USB flash drive of 16GB or larger so that the extra flash cells can prolong the life of the boot media, but high quality drives of 4GB or larger are sufficient to hold the extended coredump partition. See Knowledge Base article http://kb.vmware.com/kb/2004784.

read the new vSphere 7 boot device guidance. Embedded SD/USB installs should be viewed as a legacy option, and more performance and endurance capible larger devices should be considered.

Looking for guidance on what the endurance and size you need for an embedded boot device (as well as vSAN advice?). Check out KB2145210 that breaks out what different use cases need.

VMware vSAN, Cisco UCS and Cisco ACI information

I’ve had a few questions regarding VMware vSAN with Cisco ACI.

While mostly the guidance for ACI is the same there are a few vendor specific considerations. upon internal testing we found some recommended configuration advise and specific concerns for the multicast querier. For more information see this new storage hub section of the networking guide. 

If your looking for General vSAN networking advice, be sure to read the networking guide.

If your looking for Cisco’s documentation regarding UCS servers and VMware vSAN it can be found here.

If your looking for guidance on configuring Cisco Controllers and HBA’s Peter Keilty has some great blogs on this topic. As a reminder while I would strongly prefer the Cisco HBA over the RAID controller if you use the RAID controller you will need the cache module to have proper queue depths.

 

Looking for VMware Storage Content?

Looking for Demo’s, Videos, Design and sizing guides, VVOLs, SRM, VSAN?

Go check out storagehub.vmware.com

Did you get a fake ReadyNode?

We’ve all been there…

Maybe its the streets of NYC, or a corner stall in a mall in Bangkok, or even Harwin St here in Houston. Someone tried to sell you a cut rate watch or sunglasses. Maybe the lettering was off, or the gold looked a bit flakey but you passed on that possibly non-genuine watch or sunglasses. It might have even been made in the same factory, but it is clear the QC might have issues. You would not expect the same outcome as getting the real thing. The same thing can happen in ReadyNodes.

Real ReadyNodes for VMware vSAN have a couple key points.

They are tested. All of the components have been tested together and certified. Beware anyone in software-defined storage who doesn’t have some type of certification program as this opens the doors to lower quality components, or hardware/driver/firmware compatibility issues. VMware has validated satisfactory performance with the ReadyNode configurations. A Real ReadyNode looks beyond “will these components physically connect” and if they will actually deliver.

vSAN ReadyNodes offer choice. ReadyNodes are available from over a dozen different server OEM’s. The VMware vSAN Compatibility Guide offers over a thousand verified hardware components also to supplement these ReadyNodes for further customization. ReadyNodes are not limited to a single server or compoennt vendor.

They are 100% supported by VMware. Real VMware ReadyNodes don’t require virtual machines to mount, present or consume storage, or non-VMware supported VIBs be installed.

They are Mature. They run a 7th release, battle-tested, mature hypervisor integrated storage stack.

So what do you do if you’ve ended up with a fake ReadyNode? Unlike the fake watch I had to throw away, you can check with the vSAN compatibility list and see if you can with minimal controller or storage devices changes convert your system in place over to vSAN. Remember if your running ESXI 5.5 update 1 or newer, you already have vSAN software installed. You just need to license and enable it!

Virtual SAN performance Service: What is it? (And what about these other things)

One of the newest exciting features of Virtual SAN 6.2 is the new performance service.  This is an ESXi native performance monitoring system with API, as well as UI access.

One misconception I wanted to be clear on is that it does not require the use of vCenter Operations Manager, or the vCenter database. Instead, Virtual SAN performance service uses the Virtual SAN object store to store its data in a distributed and protected fashion.  For smaller environments who do not want the overhead of VSOM this is a great solution, and will complement the existing tools.

Now why would you want to deploy VSOM if this turnkey simple, low overhead performance system is native? Quite a few reasons:

  • VSOM offers longer term granular performance tracking. The native Virtual SAN performance service uses the same roll up schedule as vCenter’s normal performance graphs.
  • VSOM allows for forecasting and capacity planning as it analysis trends.
  • VSOM allows overlaying performance from multiple area’s and systems (Including things like switching, application KPI’s) to do root cause and anomaly analysis and correlation.
  •  VSOM offers powerful integration with LogInsight allowing event correlation with performance graphs.
  • VSOM allows for rolling up performance information across hundreds (or thousands of sites) into larger dashboards.
  • In heterogenous enivrements using traditional storage, VSOM allows collecting fabric, and array performance information.
Screen Shot 2016-05-08 at 3.45.16 PM

vCenter Server vDisk Advanced metrics

So if I don’t enable this service (or deploy VSOM) what do I get? You still get basic Latency, IOPS, throughput information from the normal vCenter performance graphs by looking at the vDisk layer. You miss out on back end component views (things like internal SSD queues and latency) as well as datastore/cluster wide metrics, but you can still troubleshoot basic issues with the built in performance graphs.

What about VSAN Observer? For those of you who remember previously this information was only available by using the Ruby vCenter shell interface (RVC). VSAN observer provides powerful visibility, but it had a number of limits:

  • It was designed originally for internal troubleshooting and lacks consistency with the vCenter UI.
  • It ran on its own web service separately and was not integrated into the existing vCenter graphs.
  • It was manually enabled from the RVC CLI
  • It could not be accessed by API
  • It was not recommended to run it continuously, or to deploy a separate Virtual machine/Container to run it from.

All of these limitations have been addressed with the Virtual SAN performance service.

I expect the performance service will largely replace VSAN Observer uses. VSAN observer will still be useful for customers who have not upgraded to VSAN 6.2 or where you do not have capacity available for the performance database.

Screen Shot 2016-05-08 at 3.59.02 PMThere is an extensive amount of metrics that can be reviewed. It offers “top down” visibility of cluster wide performance, and virtual machine IOPS and latency.

 

 

 

 

Click to expand!

Individual device metrics

Virtual SAN Performance service also offers “bottom up” visibility into device latency and queues on individual capacity and cache devices.  For quick troubleshooting of issues, or verification of performnace it is a great and simple tool that can be turned on with a single checkbox.

 

 

 

Requirements:

vSphere 6.0u2

vCenter 6.0u2 (For UI)

Up to 255GB of capacity on the Virtual SAN datastore (You can choose the storage policy it uses).

In order to enable it simple follow these instructions.

 

How to handle isolation with scale out storage

I would like to say that this post was inspired by Chad’s guide to storage architectures. When talking to customers over the years a recurring problem surfaced.  Storage historically in the smaller enterprises tended towards people going “all in” on one big array. The idea was that by consolidating the purchasing of all of the different application groups, and teams they could get the most “bang for buck”.  The upsides are obvious (Fewer silo’s and consolidation of resources and platforms means lower capex/opex costs). The performance downsides were annoying but could be mitigated. (normally noisy neighbor performance issues). That said the real downside to having one (or a few) big arrays are often found hidden on the operational side.

  1. Many customers trying to stretch their budget often ended up putting Test/Dev/QA and production on the same array (I’ve seen Fortune 100 companies do this with business critical workloads). This leads to one team demanding 2 year old firmware for stability, and the teams needing agility trying to get upgrades. The battle between stability and agility gets fought regularly in the change control committee meetings further wasting more people’s time.
  2. Audit/regime change/regulatory/customer demands require an air gap be established for a new or existing workload. Array partitioning features are nice, but the demands often extend beyond this.
  3. In some cases, organizations that had previously shared resources would part ways. (divestment, operational restructuring, budgetary firewalls).
Feed me RAM!

“Not so stealthy database”

Some storage workloads just need more performance than everyone else, and often the cost of the upgrade is increased by the other workloads on the array that will gain no material benefit. Database Administrators often point to a lack of dedicated resources when performance problems arise.  Providing isolation for these workloads historically involved buying an exotic non-x86 processor, and a “black box” appliance that required expensive specialty skills on top of significant Capex cost. I like to call these boxes “cloaking devices” as they often are often completely hidden from the normal infrastructure monitoring teams.

A benefit to using a Scale out (Type III)  approach is that the storage can be scaled down (or even divided).  VMware VSAN can evacuate data from a host, and allow you to shift its resources to another cluster. As Hybrid nodes can push up to 40K IOPS (and all flash over 100K) allowing even smaller clusters to hold their own on disk performance. It is worth noting that the reverse action is also possible. When a legacy application is retired, the cluster that served it can be upgraded and merged into other clusters. In this way the isolation is really just a resource silo (the least threatening of all IT silos).  You can still use the same software stack, and leverage the same skill set while keeping change control, auditors and developers happy. Even the Database administrators will be happy to learn that they can push millions of orders per minute with a simple 4 node cluster.

In principal I still like to avoid silos. If they must exist, I would suggest trying to find a way that the hardware that makes them up is highly portable and re-usable and VSAN and vSphere can help with that quite a bit.

 

Upcoming Live/Web events…

Spiceworks  Dec 1st @ 1PM Central- “Is blade architecture dead” a panel discussion on why HCI is replacing legacy blade designs, and talk about use cases for VMware VSAN.

Micron Dec 3rd @ 2PM Central – “Go All Flash or go home”   We will discuss what is new with all flash VSAN, what fast new things Micron’s performance lab is up to, and an amazing discussion/QA with Micron’s team. Specifically this should be a great discussion about why 10K and 15K RPM drives are no longer going to make sense going forward.

Intel Dec 16th @ 12PM Central – This is looking to be a great discussion around why Intel architecture (Network, Storage, Compute) is powerful for getting the most out of VMware Virtual SAN.

Is VDI really not “serious” production?

This post is in response to a tweet by Chris Evans (Who I have MUCH respect for and is one of the people that I follow on a daily basis on all forms of internet media). The discussion on twitter was unrelated (Discussing the failings of XtremeIO) and the point that triggered this post was when he stated VDI is “Not serious production”.

While I might have agreed 2-3 years ago when VDI was often in POC, or a plaything of remote road warriors or a CEO, VDI has come a long way in adoption. I’m working at a company this week with 500 users and ALL users outside of a handful of IT staff work in VDI at all times. I”m helping them update their service desk operations and a minor issue with VDI (profile server problems) is a critical full stoppage of the business. Even if all of their 3 critical LOB apps going down would be less of an impact. At least people could still access email, jabber and some local files.

There are two perspectives I have from this.

1. Some people are actually dependent on VDI to access all those 99.99999% uptime SLA apps so its part of the dependency tree.

2. We need to quit using 99.9% SLA up-time systems and process’s to keep VDI up. It needs real systems, change control, monitoring and budget. 2 years ago I viewed vCOPS for View as an expensive necessity, now I view it as a must have solution. I’m deploying tools like LogInsight to get better information and telemetry of whats going on, and training service desks on the fundamentals of VDI management (that used to be the task of a handful of sysadmins). While it may not replace the traditional PC and in many ways is a middle ground towards some SaaS web/mobile app future, its a lot more serious today than a lot of people realize.

I’ve often joked that VDI is the technology of last resort when no other reasonable offering made sense (Keep data in datacenter, solve apps that don’t work under RDS, organizations who can’t figure out patch/app distribution, highly mobile but poorly secured workforce). For better or for worse its become the best tool for a lot of shops, and its time to give it the respect it deserves.

At least the tools we use to make VDI serious today (VSAN/VCOPS/LogInsight/HorzionView6) are a lot more serious than the stuff I was using 4 years ago.

My apologies, for calling our Chris (which wasn’t really the point of this article) but I will thank him for giving me cause to reflect on the state of VDI “seriousness” today.

How does your organization view and depend on VDI today, and is there a gap in perception?

VMworld Day 1

I’m looking forward to this week and here are a few highlights of what I’ll be looking into.

On the tactical

1. Settling on a primary load balancing partner for VMware View. (Eying Kemp, anyone have any thoughts?). I’ve got a number of smaller deployments (few hundred users) that need non-disruptive maintenance operations, and patching on the infrastructure and are looking to take their smaller pilots or deployments forward.

2. Learn more about VDP-A designs, and best practices. I’ve seen some issues in the lab with snapshots not getting removed from the appliance and need to understand the scaling and design considerations better.

3. Check out some of the HOL updates. Find out if a VVOL lab in the office is worth the investment.

On the more general strategic goals.

Check out cutting edge vendors, and technologies from VMware.

CloudVolumes – More than just application layering. Server application delivery, Profile abstraction thats fast and portable, and a serious uplift to persona and ThinApp. Really interested in use cases having it used as a delivery method for Thinapp.

DataGravity – In the era of software defined storage this is a company making a case that an array can provide a lot of value still. Very interesting technology but the questions remain. Does it work? Does it Scale? Will they add more file systems, and how soon will EMC/HP buy them to bolt this logic into their Tier 1 arrays. Martin Glassborow has made a lot of statements that new vendors don’t do enough to differentiate, or that we’ve reached peak features (Snaps, replication, cache/tier flash, data reduction etc) but its interesting to see someone potentially breaking outside of this mold of just doing the same thing a little better or cheaper.

VSAN – Who is Marvin? What happened to Virsto? I’ve got questions and I hope someone has answers!